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Mechanical Function

e The skeleton plays a critical structural role in bearing functional loads
e Weight-bearing and muscle loads

e Bones act as levers (rigid bodies) to help our musculoskeletal system perform a task

Charles et al, | IS, 2004 ‘ Karadsheh (Orthobullets) Bones, Currey, 2002
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Structural Adaptation to Loads
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Simple Loads

Types of mechanical loading FT FL
— Compression/Tension
— Bending
— Shear
— Torsion
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Bone Mechanical Properties

e Strength — load bone can bear before breaking

e Stiffness — deformation under load

Ultimate Load F Failure

Displacement d

Cole and van der Meulen, 2011



Bone Mechanical Properties

e Strength — load bone can bear before breaking

Whole bone Strength

Total Bone Mass Geometric Distribution Material Properties
(BMC, BV/TV) (geometry, architecture) (tissue composition)
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Basic Mechanics

Stress & Strain
— Account for the geometry

AL

Stress = Force/Area Strain = AL /L,

Adapted from Le, 2009, OTA



Stress-Strain Curve

e Standardized curves used to help quantify how a material will
respond to a given load

— Yield Stress

— Ultimate Stress
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Anisotropy

* [sotropic
— Same mechanical properties in all directions
— Metals - stainless steel, titanium

* Anisotropic
— Mechanical properties dependent upon direction of loading
— Musculoskeletal tissues: bone, cartilage, muscle, ligament
— Specifically oriented components
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Viscoelasticity

e Stress-Strain character dependent upon rate of applied strain

(time dependent)

* Viscous and elastic characteristics when undergoing deformation
™ strain rate = 1 stiffness, 1 strength, > energy
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Bone Fractures



Simple Fracture Patterns
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Common Causes of Fracture

1. Trauma
2. Fatigue

3. Pathologic



Traumatic Fracture

* Acute
* High energy
* Load exceeds strength of bone

Children’s Orthopaedics of Atlanta




Common Examples

Ski Boot Fracture
— Falling forward
— Binding malfunction

— Loading Mechanism?
* Bending? Shear?

— 90% non-contact

Fracture area

Tensive ik Tensive
strength g strength

Fig. 1.21. A bending load at three points creates fracture in ski boots and occurs when the ski
is detained abruptly. A compressive strength is created in the anterior tibia and a tensile
strength is created in the posterior tibia. The tibia fracture is usually on the back. Bankoff
(2007, p. 132).
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Tibial Fractures in Alpine Skiing and Snowboarding.
Stenroos et al, 2016



Common Examples

Distal Radius
— Falling on an outstretched hand

— Loading Mechanism?
* Compression

Humerus

Radius
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Common Examples

* Clavicle Fracture
— Loading Mechanism?

* compression (oblique pattern)



Common Examples

Pelvis
— Loading Mechanism?

e Shear

Vertical shear (VS)

The innominate bone on one side is
(11H[)|d\ ed vertically, fracturing the pL.br
rami and dnsruplu‘q the sacroiliac region
on the same side. This is typically occurs
when falls from a height on one leg
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Stress Fractures

* Hairline/Fissure/Fatigue-induced fracture

— Overuse injury

— FATIGUE - result of accumulated trauma from repeated loading (less than
strength of bone)

— Not accidental loads

AAQOS Ortholnfo



Pathologic Fractures

* Caused by condition/disease that led to weak bone
— Low energy
— Most common cause — Osteoporosis
— Other conditions: cancer, infection, bone disorders, bone cyst

Fragility Fracture

Bone tumors of the femoral shaft (L) and humeral metaphysis (R)
AAOS Ortholnfo

De Bakker et al, 2009
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Aging

* Bone remodeling = mechanical compensation

— shifting effective bone to periphery
* M moment of inertia as the cortex thins

* P resistance to bending and torsion (Bouxsein & Karasik, 2006)

Amount of bone
resorbed
formed

Elderly

Seeman, 2003



Osteoporosis & Fragility Fractures

e (Osteoporosis
e Disease characterized by low bone mass + structural deterioration
e I bone fragility & fracture risk
e > 25% of women 80+ yrs old (NIH, 2011)

e Leads to 9 million fragility fractures annually worldwide (Johnell & Kanis, 2006)

e Most common fragility fractures - spine, hip, wrist

Normal bone Osteoporosis




Bone Fracture Risk

* Factors increasing risk of fragility fractures

Age
Gender - 70% of hip fractures occur in women

Physical inactivity — weight-bearing exercise is good!

Nutritional problems — lack of calcium and Vitamin D

Chronic medical conditions — endocrine & intestinal disorders
Glucocorticoids (Cortisone)

Tobacco & alcohol use

Previous fracture

Family history of osteoporosis



Osteoporosis

e Bone Density Test

e C(Clinical standard:
Dual-energy X-ray absorptiometry (DXA)

e Uses X-rays to measure bone mineral density
& determine if you have osteoporosis

e Anatomic locations: hip, spine, forearm

e Results: T-score and Z-score
e T-score> -1 Normal

e T-score:-1to-2.5 Osteopenia

e T-score< -2.5



Bone Fracture Risk

FRAX® Fracture Risk Assessment Tool

e Developed by WHO in 2008

e Prediction tool for assessing individual’s risk of bone fracture

o
FRAX = WHO Fracture Risk Assessment Tool

Questionnaire:
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Research

Biomechanical evaluation of fracture fixation strategies

— Experimental testing
- Using artificial or cadaveric bones
- Create physical fracture fixation constructs

- Apply physiologic loads

- Measure strength, stiffness, fatigue life




Research

Biomechanical evaluation of fracture fixation strategies

— Finite element analysis

* Virtual surgery

e Simulation of mechanics
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Calculation of Joint Loads from Gait Lab Measurements

3D Motion Analysis (Kinematics)
Ground reaction forces (Kinetics)

Use Inverse Dynamics to calculate joint loads

Musculoskeletal Modeling

ﬂ Acquire & Input

Reverse
Patient-Specif
Musculoskeletal Models
L * Kinematics & kinetics
| * Muscle forces

Analyse & App/y 1”“ * Joint forces

> * Energetics

* Functional performance
*  Metabolic cost
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Novel Movements

Simulate & Predict

The Biomechanist



Direct Measurement of Joint Loads Using Instrumented Implants

@) www.orthoload.com * Charité Berlin * Show Implant Loads and Videos

www.orthoload.com * Charité Berlin
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