Osher Mini Medical School – 11/13/2019

HEPATOCELLULAR CARCINOMA (HCC)

Neil Mehta, MD Assistant Clinical Professor

HEPATOCELLULAR CARCINOMA

- Risk factors and epidemiology
- Surveillance for HCC
- Diagnosis and staging
- Treatment decisions Surgical options and criteria Local regional therapy Systemic therapy

HEPATOCELLULAR CARCINOMA

- Hepatocellular carcinoma (HCC) is the 5th most common cancer worldwide, and the 3rd leading cause of cancer-related deaths¹
- In Asia and Sub-Saharan Africa alone, >500,000 new HCC cases develop each year²
- Most HCC cases are associated with an underlying risk factor¹

¹Ferenci P, et al. J Clin Gastroenterol. 2010;44(4):239-245. ²Thomas and Zhu. J Clin Oncol. 2005;23(13):2892-2899.

Rising Incidence of HCC in the U.S.

Njei B. et al. Hepatology 2015;61:191-199

WHO IS AT RISK FOR HCC?

WHO IS AT RISK FOR HCC?

METABOLIC SYNDROME/ NAFLD AND HCC

Non-alcoholic Fatty Liver Disease

Adopted from Baffy G, Brunt EM, & Caldwell SH. J Hepatol 2012;56:1384-1391

METABOLIC SYNDROME/ NAFLD AND HCC

METABOLIC SYNDROME/ NAFLD AND HCC

Multiple Logistic Regr	ession Analysis	
Pre-existing conditions	Adjusted OR*	p-value
HBV	19.87	< 0.0001
HCV	62.92	< 0.0001
Unspecified viral	13.46	< 0.0001
Alcoholic liver disease	35.29	< 0.0001
Non-specified cirrhosis	50.15	< 0.0001
Smoking	2.97	< 0.0001
Metabolic syndrome	2.58	< 0.0001
Impaired glucose tolerance/	2.90	< 0.0001
diabetes mellitus		
Dyslipoproteinemia	1.35	< 0.0001
Hypertension	1.93	< 0.0001
Obesity	2.58	< 0.0001

*Adjusted for age and sex, race

Welzel TM et al. Hepatology 2011;54:463-471

SURVEILLANCE OF HCC

- Surveillance = applying screening tests at regular intervals in patients at risk for HCC.
- Most commonly used surveillance in clinical practice = ultrasound + alpha-fetoprotein (AFP) every 6 months.
- The added value of AFP to ultrasound in surveillance has been questioned. AFP no longer included in AASLD guidelines.

OUTCOME OF HCC SURVEILLANCE

- 18,816 people with HBV infection or history of chronic hepatitis in urban Shanghai, China enrolled
 - Surveillance group offered US and AFP every 6 months Control group received no surveillance

Zhang BH, et al. J Cancer Res Clin Oncol. 2004;130:417-422.

TUMOR MARKERS

• Alpha-fetoprotein (AFP) as a screening test

- 30-40% with HCC have normal AFP
- 20-30% without HCC have abnormal AFP
- The higher the AFP, the more likely the diagnosis of HCC
- AFP 20 ng/ml performs best on ROC curve

AFP as a prognostic marker

- predicts overall mortality in HCC
- predicts prognosis after resection
- predicts prognosis after liver transplant

Marrero JA et al. Gastroenterology 2009;137:110-118 Tyson GL et al. Clin Gastro Hepatol 2012

CASE PRESENTATION

25 year-old Chinese woman with chronic hepatitis B and recent liver biopsy showing no fibrosis and minimal portal inflammation. No symptoms. Mother was diagnosed with liver cancer at age 55, treated with resection. Examination showed no spider nevi. Liver and spleen tip not palpable.

Laboratory evaluation showed bilirubin 1.0, ALT 19, AST 15, platelets 215,000, hepatitis B e antigen (-), hepatitis B DNA < 10 IU/mL. Previous labs last 3 years all showed normal ALT.

Your recommendations regarding HCC surveillance:

- 1. No screening until the age of 50
- 2. Screen with ultrasound and alpha-fetoprotein every 6 months
- 3. Screen with ultrasound and alpha-fetoprotein every 12 months
- 4. Screen if detectable hepatitis B DNA or elevated ALT during follow-up

CASE PRESENTATION

25 year-old Chinese woman with chronic hepatitis B and recent liver biopsy showing no fibrosis and minimal portal inflammation. No symptoms. Mother was diagnosed with liver cancer at age 55, treated with resection. Examination showed no spider nevi. Liver and spleen tip not palpable.

Laboratory evaluation showed bilirubin 1.0, ALT 19, AST 15, platelets 215,000, hepatitis B e antigen (-), hepatitis B DNA < 10 IU/mL. Previous labs last 3 years all showed normal ALT.

Your recommendations regarding HCC surveillance:

- 1. No screening until the age of 50
- 2. Screen with ultrasound and alpha-fetoprotein every 6 months
- 3. Screen with ultrasound and alpha-fetoprotein every 12 months
- 4. Screen if detectable hepatitis B DNA or elevated ALT during follow-up

HCC Screening in Patients with Chronic HBV

 Patients at high risk for HCC should be screened with <u>Ultrasound (+ AFP) every 6 months</u>

1) Cirrhosis

- 2) Family history of HCC
- 3) Age \geq 40 for male and \geq 50 for female (\geq 20 for Africans)
- 4) Active replication (HBV DNA+) and or active necroinflammatory activities

HCC Surveillance in non-HBV cirrhosis

- HCC surveillance is recommended for <u>all patients</u> with cirrhosis
 - Unless Child-Pugh C disease and not on LT waitlist
- Insufficient evidence to suggest surveillance before development of cirrhosis (except HBV)
- The risk of HCC with HCV-related cirrhosis who develop SVR with DAA is lowered, but not eliminated
 - These pts should continue to undergo surveillance

Marrero et al - AASLD guidelines; Hepatology 2018

Lamivudine for Prevention of Liver-Related Complications in Patients with HBV-Cirrhosis

• HCC in 3.9% lamivudine-treated patients vs 7.4% placebo controls HR=0.49, P=0.047

Liaw YF, et al. N Engl J Med. 2004;351:1567

Cumulative Incidence of HCC across a HBV DNA gradient

Chen CJ and the REVEAL-HBV Study Group. JAMA 2006;295:65-73

SVR TO DAA THERAPY IN HCV/HCC: SYSTEMATIC REVIEW AND META-ANALYSIS

49 studies included from 15 countries (3341 HCC pts & 35701 non-HCC pts)

Pooled SVR (i.e cure) for HCC: 89.6% vs 93.3% for non-HCC (p=0.001)

Ji F, et al. J Hepatology 2019

SVR TO DAA THERAPY IN HCV/HCC: SYSTEMATIC REVIEW AND META-ANALYSIS

Pooled SVR for ACTIVE HCC: 73.1% vs 93.0% for non-HCC (p=0.001)

			Events per 100					
Study	SVR12	Total	observations	SVR12(%)	95% CI	Weight		
Subgroup = Active HCC	C Outside	-Asia						
Pascasio 2017	101	116		87.1	[79.8; 92.0]	5.3%		
Al-Judaibi 2018	32	39		82.1	[67.3: 91.0]	4.6%		
Curry 2015	30	43		69.8	[54.9; 81.4]	4.7%		
Saberi 2017	14	21		66.7	[45.4; 82.8]	4.0%		
Prenner 2017	31	58		53.4	[40.8; 65.7]	4.9%		
Random effects model	208	277		73.1	[57.9; 86.0]	23.4%		
Heterogeneity: /2 = 84.1%,	p < 0.000	01						
Subgroup = Inactive H	CC Outsi	de-Asia	3					
Barone 2018	23	23		100.0	[85.7; 100.0]	4.1%		
Globke 2016	20	20		100.0	[83.9; 100.0]	3.9%		
Prenner 2017	73	75		97.3	[90.8; 99.3]	5.0%		
ANRS Group 2016	248	256		96.9	[94.0; 98.4]	5.5%		
Reig 2016	39	40		97.5	[87.1; 99.6]	4.6%		
Cabibbo 2017	138	143		96.5	[92.1; 98.5]	5.3%		
Lubel 2017	30	31		96.8	[83.8; 99.4]	4.4%		
Persico 2018	153	161		95.0	[90.5; 97.5]	5.4%		
Virlogeux 2017	22	23		95.7	[79.0; 99.2]	4.1%		
Warzyszynska 2017	18	19		94.7	[75.4; 99.1]	3.8%		
Conti 2017	78	85		91.8	[84.0; 96.0]	5.1%		
Eletreby 2017	18	20		90.0	[69.9; 97.2]	3.9%		
Adhoute 2018	19	22		86.4	[66.7; 95.3]	4.0%		
Preda 2017	12	14		85.7	[60.1; 96.0]	3.5%		
Zavaglia 2017	26	31		83.9	[67.4; 92.9]	4.4%		
El Kassas 2018	41	53		77.4	[64.5; 86.5]	4.8%		
Hassany 2018	40	62		64.5	[52.1; 75.3]	4.9%		
Random effects model	998	1078	-	93.0	[88.7; 96.5]	76.6%		
Heterogeneity: /2 = 78%, p	< 0.0001							
Random effects model	1206	1355	_	89.2	[83.7; 93.8]	100.0%		
Heterogeneity: /2 = 86.4%.								
40 50 60 70 80 90 100								
Subgroup differences: χ_1^2 =9.03, df = 1, (p = 0.0027) SVR12 (%)								

Ji F, et al. J Hepatology 2019

CASE PRESENTATION

55 year-old man with chronic hepatitis C and biopsy proven cirrhosis, found on screening ultrasound to have a 3 cm lesion in the right lobe. Quad-phase CT of the abdomen confirmed the presence of a 2.5 cm lesion in the right lobe. No symptoms other than mild fatigue. No history of substance abuse. Examination showed no spider nevi. Spleen tip palpable.

Laboratory evaluation showed bilirubin 1.7, ALT 128, AST 98, albumin 3.5, INR 1.3, platelets 85,000, AFP 36.

Questions:

- **1.** What are the typical characteristics of HCC on quad-phase CT?
- 2. Would you biopsy the lesion and why?

LIVER IMAGING REPORTING AND DATA SYSTEM (LI-RAD) MAJOR DIAGNOSTIC CRITERIA

- Arterial phase hyper-enhancement
- Delayed phase "washout"
- Pseudo-capsule
- Interval growth \geq 50% diameter within 6 mo

Different diagnostic criteria for lesion ≥2 cm versus < 2 cm

HCC – RADIOLOGIC DIAGNOSIS

Arterial Phase

Portal Venous phase

Hyper-enhancement

"washout"

HCC – RADIOLOGIC DIAGNOSIS

Arterial Phase

Hyper-enhancement

Portal Venous phase

LIVER IMAGING REPORTING AND DATA SYSTEM (LI-RADS)

American College of Radiology: Standardized reporting of CT or MRI imaging for HCC in patients with cirrhosis or other risk factors

Li-RAD 1: Li-RAD 2: Li-RAD 3: Li-RAD 4: Li-RAD 5:

Definite benign Probable benign Indeterminate Probable HCC Definite HCC

LIVER IMAGING REPORTING AND DATA SYSTEM (LI-RADS)

LIVER MASS

Diagnostic Criteria		Arterial phase hypo- or Iso- enhancement		Arterial phase hyper- enhancement		
↓	\checkmark	< 2 cm	≥ 2 cm	< 1 cm	1-1.9 cm	≥ 2 cm
"Washout"	None	LIRAD 3	LIRAD 3	LIRAD 3	LIRAD 3	LIRAD 4
"Capsule"	One	LIRAD 3	LIRAD 4	LIRAD 4	LIRAD 4	LIRAD 5
Threshold growth	≥ Two	LIRAD 4	LIRAD 4	LIRAD 4	LIRAD 5	LIRAD 5

LI-RADS ACCURACY

CT/MRI LI-RADS v2018, accessed January 2019

HCC – IS BIOPSY NECESSARY?

Biopsy is not necessary to confirm HCC diagnosis if the lesion meets radiologic criteria in the appropriate clinical setting

False negative biopsy common in clinical practice and may lead to delay in diagnosis and treatment

Tumor seeding along the biopsy tract in 1-5%

Biopsy in selected cases if atypical radiologic appearance or lack of strong risk factor for HCC

MULTIDISCIPLINARY LIVER TUMOR BOARD

PARTICIPANTS Hepatologists Liver surgeons Interventional radiologists **Radiologist - Abdominal imaging** Oncologists **Radiation Oncologists OBJECTIVES** Confirm diagnosis and staging **Determine treatment strategies**

BCLC STAGING CLASSIFICATION

Adapted from Llovet JM et al. Lancet 2003;362:1907-17

CASE PRESENTATION

55 year-old man with chronic hepatitis C and biopsy proven cirrhosis, found on screening ultrasound to have a 3 cm lesion in the right lobe. Quad-phase CT of the abdomen showed a 2.5 cm arterial enhancing lesion in segment 6 with washout. No symptoms other than mild fatigue. No history of substance abuse. Examination showed no spider nevi. Spleen tip palpable. Dx: LI-RADS 5 per Tumor Board review

Laboratory evaluation showed bilirubin 1.7, ALT 128, AST 98, albumin 3.5, INR 1.3, platelets 85,000, AFP 36.

What treatment would you recommend?

- 1. Anatomic resection
- 2. Wedge resection
- 3. Liver transplantation
- 4. Percutaneous radiofrequency ablation (RFA)

CASE PRESENTATION

55 year-old man with chronic hepatitis C and biopsy proven cirrhosis, found on screening ultrasound to have a 3 cm lesion in the right lobe. Quad-phase CT of the abdomen showed a 2.5 cm arterial enhancing lesion in segment 6 with washout. No symptoms other than mild fatigue. No history of substance abuse. Examination showed no spider nevi. Spleen tip palpable. Dx: LI-RADS 5 per Tumor Board review

Laboratory evaluation showed bilirubin 1.7, ALT 128, AST 98, albumin 3.5, INR 1.3, platelets 85,000, AFP 36.

What treatment would you recommend?

- 1. Anatomic resection
- 2. Wedge resection
- 3. Liver transplantation
- 4. Percutaneous radiofrequency ablation (RFA)

SURGICAL TREATMENT FOR HCC CIRRHOSIS AND LIVER FUNCTION

Survival following resection: Impact of portal hypertension

Llovet et al. Hepatology 1999; 30:1434

BCLC Definition of Optimal Surgical Candidate

EASL Clinical Practice Guidelines 2018

HEPATIC RESECTION FOR HCC WITH CIRRHOSIS

"Ideal" candidate

- Good liver function Child's A
- No portal hypertension (suggested by varices, enlarged spleen, platelets < 100)
- Normal bilirubin
- Single lesion \leq 5 cm
- Location of tumor in left lobe
TUMOR RECURRENCE POST-RESECTION

Approx 40-50% at 3 yrs and 60-70% at 5 yrs

Predictors of tumor recurrence

- Vascular invasion
- Multi-focal HCC/ satellite tumor nodules
- Tumor size > 5 cm
- Positive resection margins
- Lymph node involvement
- High alpha-fetoprotein

LIVER TRANSPLANTATION FOR HCC MILAN CRITERIA

Mazzaferro, et al. N Engl J Med 1996;334:693-699

LIVER TRANSPLANTATION FOR HCC STAGE T2 CRITERIA

Mazzaferro, et al. N Engl J Med 1996;334:693-699

LIVER TRANSPLANT FOR HCC: RECENT CHANGES

 6-month mandatory waiting period before awarding MELD exception

DELAYED HCC-MELD EXCEPTION SCORE

Delays in HCC-MELD exception	HCC Transplant rates (per 100 person-years)	Non-HCC Transplant rates (per 100 person-years)
0	108.7	30.1
3 months	65.0	32.5
6 months	44.2	33.9
9 months	33.6	34.8

Heimbach J, et al. Hepatology 2015;61:1643-1650

LIVER TRANSPLANT FOR HCC: RECENT CHANGES

 6-month mandatory waiting period before awarding MELD exception

Regional variation in access to LT for HCC still exists

PROBABILITY OF WAITLIST DROPOUT BY WAIT TIME REGION AND LISTING PERIOD

Mehta N et al, Liver Transplantation 2018

LIVER TRANSPLANT FOR HCC: RECENT CHANGES

- As of May 2019, HCC MELD ladder system has been replaced by awarding median MELD at transplant (MMAT) for the donor service area (DSA) minus 3 points
 - 6 month waiting period still in effect

AFP and Post-transplant Outcome- France

Duvoux et al. Gastroenterology 2012;143:986-94

AFP and Post-transplant Outcome - UCSF

Hameed B. et al. Liver Transplantation 2014; 945-951

High AFP Threshold

 Candidates with lesions meeting T2 criteria but with an AFP >1000 are not eligible for a standardized MELD exception

• If AFP falls <500 after LRT, the candidate is eligible for a standardized MELD exception

LIVER TRANSPLANTATION FOR HCC METROTICKET 2.0

Mazzaferro V et al. Gastroenterology 2018;154:128-39

CASE PRESENTATION

56 year-old man with chronic HBV, well suppressed on antiviral therapy. He received inadequate HCC surveillance and was found to have two LI-RADS 5 tumors in the right lobe measuring 5 cm and 3 cm. Asymptomatic (ECOG 0). No substance abuse. No significant medical history.

Laboratory: HCT 42.4, platelets 84,000, creatinine 0.6, total bilirubin 0.9, albumin 4.2, hepatitis B DNA (-), AFP 49 ng/mL

CASE PRESENTATION

CASE PRESENTATION

56 year-old man with chronic HBV, well suppressed on antiviral therapy. He received inadequate HCC surveillance and was found to have two LI-RADS 5 tumors in the right lobe measuring 5 cm and 3 cm. Asymptomatic (ECOG 0). No substance abuse. No significant medical history. Laboratory: HCT 42.4, platelets 84,000, creatinine 0.6, total bilirubin 0.9, albumin 4.2, hepatitis B DNA (-), AFP 49 ng/mL

What treatment would you recommend?

- 1) Resection
- 2) Microwave ablation
- 3) Sorafenib

4) Liver transplant after down-staging to within Milan criteria

CASE PRESENTATION

56 year-old man with chronic HBV, well suppressed on antiviral therapy. He received inadequate HCC surveillance and was found to have two LI-RADS 5 tumors in the right lobe measuring 5 cm and 3 cm. Asymptomatic (ECOG 0). No substance abuse. No significant medical history. Laboratory: HCT 42.4, platelets 84,000, creatinine 0.6, total bilirubin 0.9, albumin 4.2, hepatitis B DNA (-), AFP 49 ng/mL

What treatment would you recommend?

- 1) Resection
- 2) Microwave ablation
- 3) Sorafenib

4) Liver transplant after down-staging to within Milan criteria

Down-staging of HCC for Transplant

- <u>Definition</u>: Reduction in the size of tumor using local regional therapy to meet acceptable criteria for liver transplant ¹
- <u>Tumor response</u>: Based on radiographic measurement of the size of all viable tumors, not including the area of necrosis from local regional therapy ²
- <u>A selection tool</u> for tumors with more favorable biology that respond to down-staging treatment and also do well after liver transplant ¹

1. Yao & Fidelman. Hepatology 2016;63:1014-1025 2. EASL Guidelines - Briux J. et al. J Hepatol 2001;35: 421–430

Down-staging of HCC for Transplant

Yao & Fidelman. Hepatology 2016;63:1014-1025

LOCAL REGIONAL THERAPIES FOR HCC

CHEMOEMBOLIZATION (TACE) Conventional versus Drug-eluting beads ABLATIONS CHEMICAL Percutaneous ethanol injection (PEI) THERMAL **Radiofrequency ablation (RFA)** (Laparoscopic, percutaneous or open) **Microwave/ Cryo- ablation RADIOEMBOLIZATION (YITTRIUM - 90) STEREOTACTIC BODY RADIATION (SBRT)**

TRANSCATHETER ARTERIAL CHEMOEMBOLIZATION

- Selective embolization of the hepatic arterial supply to tumor via the common femoral artery. - Cytotoxic agent (Cis-platinum, Doxorubicin, Mitomycin-C, 5-FU) mixed with lipiodol or gelfoam particles. - Complications include fever, abdominal pain, infection (abscess), hepatic arterial injury, hepatic decompensation

Meta-analysis of RCT for TACE/TAE vs. Placebo/ suboptimal Therapy

Llovet JM, Bruix J. Hepatology 2003;37:429-442

Y-90 RADIOEMBOLIZATION

- TheraSphere (glass microspheres)
- SIR-Spheres (resin microspheres)
- Radiographic response up to 90%
- Survival benefit unknown
- Risks of radiation damage
- Advanced tumor stage and preserved liver function (bilirubin < 2mg/dl)

SIRT (Y-90) versus TACE (PREMIERE)

Salem R, et al. Gastroenterology 2016;151:1155-1163

SIRT (Y-90) versus TACE (PREMIERE)

Salem R, et al. Gastroenterology 2016;151:1155-1163

UCSF/REGION 5 DOWN-STAGING PROTOCOL

- Inclusion criteria
 - 1 lesion > 5 cm and \leq 8 cm
 - 2 or 3 lesions \leq 5 cm w/ total tumor diameter \leq 8 cm
 - 4 or 5 lesions \leq 3 cm w/ total tumor diameter \leq 8 cm
 - No vascular invasion on imaging
- Minimum 3 month observation period after successful down-staging into Milan before LT can be undertaken

Region 5 D/S Multi-center Study: Post-LT Survival

Mehta N et al. Clin Gastroenterol Hepatol 2018;16:955-964

UNOS DOWN-STAGING PROTOCOL

- Inclusion criteria
 - 1 lesion > 5 cm and \leq 8 cm
 - 2 or 3 lesions \leq 5 cm w/ total tumor diameter \leq 8 cm
 - 4 or 5 lesions \leq 3 cm w/ total tumor diameter \leq 8 cm
 - No vascular invasion on imaging
- This protocol has recently been adopted as national policy for automatic priority listing in patients who have been successfully down-staged to within Milan criteria

CASE PRESENTATION

Radioembolization with TheraSphere/Y-90

Tc-MAA

CASE PRESENTATION

Pre-Y90

1 mo p Y90#1

1 mo p Y90#2 4 mo p Y90#1

MICROWAVE/RADIOFREQUENCY ABLATION

Choice of treatment based on location and size

MICROWAVE/RADIOFREQUENCY ABLATION

Limitations of percutaneous RFA – Tumor location

Adjacent to diaphram

Adjacent to bowel

MICROWAVE/RADIOFREQUENCY ABLATION

Limitations of percutaneous RFA – Tumor location Adjacent to large vessel (heat-sink)

MICROWAVE/RADIOFREQUENCY ABLATION IMPACT OF TUMOR SIZE

<= 3 cm versus > 3 cm

- Treatment response rate 70-95% for lesions < 3 cm versus around 50% for lesions > 3 cm
- In lesions > 3 cm, overall 5-year survival 30-35%, 5-year recurrence rate up to 80%.

Sala M, et al. Hepatology 2004;40:1352-60 Lencioni R, et al. Radiology 2005;234:961-7 N'Kontchou G, et al. Hepatology 2009;50:1465-83 Santambrogio R, et al. Ann Surg Oncol 2009;16:3289-98

BCLC STAGING CLASSIFICATION

Adapted from Llovet JM et al. Lancet 2003;362:1907-17

TARGETED THERAPY FOR HCC The Dawn of a New Era?

TARGETED THERAPY FOR HCC SORAFENIB

 The Sorafenib HCC Assessment Randomized Controlled Protocol (SHARP) trial - 602 patients with advanced HCC (1/2 with vascular invasion or metastases) and Child's A cirrhosis randomized to oral sorafenib 400 mg bid versus placebo, showing a modest but significant survival benefit with sorafenib

Median survival 3 months longer (10.7 vs 7.9 mo)

 The safety of sorafenib has <u>not</u> yet been established in patients with Child's C cirrhosis and should be used only in the context of clinical trials (GIDEON)

Llovet JM et al. NEJM 2008; 359:378-390
TARGETED THERAPY FOR HCC LENVATINIB

- Open label phase-3 study REFLECT compared 1st line lenvatinib vs sorafenib
- Lenvatinib was non-inferior to sorafenib
 Median OS 13.6 vs 12.3 mo (HR 0.92)
- Lenvatinib had improvement in secondary endpts
 PFS, TTP, and ORR all better w/ lenvatinib
- Discontinuation rate due to AEs fairly similar (9% vs 7%)
- In 2018, Ienvatinib approved in US, Europe, and Japan

Kudo M et al. Lancet 2018;391:1163-73

TARGETED THERAPY FOR HCC

2nd LINE THERAPY FOR HCC

Tyrosine kinase inhibitors

Regorafenib¹

- Phase-3 RESORCE study in patients who tolerated sorafenib ≥ 400 mg daily for 20 of prior 28 days
- OS: 10.6 months vs 7.8 months with placebo (HR 0.63)

Cabozantinib²

- Phase-3 CELESTIAL study
- OS: 10.2 months vs 8.0 months with placebo (HR 0.76)

Immunotherapy

Nivolumab³

- Phase-2 CHECKMATE-040 study
- ORR (mRECIST): 19%
- OS: 15.6 months

Pembrolizumab⁴

- Phase-2 KEYNOTE-224 study
- ORR (mRECIST): 15%
- OS: 12.9 months

Anti-VEGF

Ramucirumab⁵

- Phase-3 REACH-2 study in patients with AFP > 400
- OS: 8.5 months vs 7.3 months with placebo (HR 0.71)

Bruix J, et al. Lancet 2017;389:56-66.
 Abou-Alfa GK, et al. N Engl J Med 2018;379:54-63.
 El-Khoueiry AB, et al. Lancet 2017;389:2492-2502.
 Zhu AX, et al. Lancet Oncol 2018;9:940-952.
 Zhu AX, et al. J Clin Oncol 2018;36:Suppl:4003

TARGETED THERAPY FOR HCC

Overall Survival now 26+ months

Osher Mini Medical School – 11/13/2019

- Questions?
- neil.mehta@ucsf.edu

