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Introduction

» Concept of bio-interactive neural
interfaces dates to early 20" century

» Successful translation of
- Cochlear implants
- Deep brain-stimulation (DBS)
- Responsive stimulation (RNS)

* Neural Interface for paralysis and

rehabilitation
- ‘Brain-Machine Interfaces’/’Brain-Computer
Interfaces’



Cochlear Implants

* Auditory nerve stimulation research
starting in the 1950s

+ ~22,000 adults and ~15,000 children
live in the US with cochlear implants



Deep-Brain Stimulation



Neural Interfaces

for Communication
and Movement




Motor Disability in the US



Loss of Independence

Rehabilitation Needs Vary

Comatose

VS/MCS (cardiopulmonary arrest, TBI, etc)

Locked-In (e.g. TBI, Stroke, ALS)

Above ~C5
Quadriplegia, SCI <
(CRALS, s, etc) Below ~C5/C6

Paraplegia

Upper Limb paralysis




Patient Rehabilitation Goals

O



Motor Dysfunction



Brain-Computer Interface (BCl)

_ Move left..

Also known as “Neural Interface” and “Brain-Machine Interface/BMI”



Extracellular Recording of Activity

Spikes

Spikes

El

Neurons

ectrode

|

(ﬁ Field potentials
ECoG
% ? ( > Electrode

AR A




Recording neural activity from the brain
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Recording neural activity from the brain




Principles Underlying BCI Control



Volitional control of brain activity

Average firing rate (impulses/second)




Volitional control of movements

BCls grounded by > 40 years of research into movement control!
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Distributed neural population activity



Recording from neural populations

M1(R) PMd (L) M1 (L)




Real-time decoding of hand position

@ Actual hand movements

Black = Actual Movemen t
Red = Predicted Movement
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“Closed-Loop” Brain-Computer Interfaces

Neural Signals

o

“Decoders”

=

Sensors

“Actuator”

* Prosthetics
* FES

* Stimulation

Feedback



Neural plasticity key for stable BCI control



Examples of BCI Control in
Human Subjects



Development of BCI Control

*  Real-time recording of ensembles
Chapin et al., 1999; Wessberg et al., 2000

*  Multiple demonstrations of ‘closed-loop’

control over an external device

Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Velliste et al.,
2008; Pohlmeyer et al., 2009

*  Human subjects can learn direct neural

control of a computer cursor
Kennedy et al., 2000; Leuthardt et al., 2004; Hochberg et al., 2006

*  Clear demonstration that a subject’s
intentions can be translated



EEG-interface for communication

Two patients with advanced ALS (ventilated, PEG tube for >4
years) could learn to communicate

Patients were ‘locked-in” (no voluntary muscle movements)
EEG signals could be used to type a message (but very slow!)
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Case Report: A 51yo molecular biologist with ALS...




BCI Control of a Computer Cursor



BCI Control in a tetraplegic subject



Translational Challenges

Signals are not stable = Utah Array
Daily training required because of signal stability
Complex setups that require lot of support

Currently not wireless (this will be solved soon)



Ongoing UCSF studies

- ECoG BClI Trial
- Neural Interfaces for Stroke



ECoG based chronic implant

FDA cleared testing of a chronic ECoG based device
* Addresses a downside of current trials

* Signal instability

* Daily training

* Two primary goals are control of a typing interface
and a complex robotic arm

* Leverage stability of ECoG signals to engage learning
and plasticity

** Experimental Device > FDA Investigational Device Exemption (IDE)



‘Plug-and-Play’ BCI Control

‘Neural maps’ Across Days



Impaired hand function after stroke

* ~700,000 strokes/year

» >$15K for rehabilitation per patient
— Limits of rehab (ICARES Trial, 2018)

* ~50% with hand impairments,
limits independence



Towards the Development of a
Closed-Loop Neural Interface for Stroke

Stimulation

Neural signal

EMG

What is required for closed-loop modulation?
- Electrophysiological targets?
- Predictor of good/poor recovery?
- Can targeted stimulation help chronic deficits?



Synchronous Network Activity During Skilled Movements
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Changes in Speed/Consistency with Learning

M1-DLS
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Reemergence of synchronous activity
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Responsive Stimulation

| Temporal electrical stimulation

j Limb position

Onset of
movement
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Responsive Stimulation

Stim (400 pA)
75| No-stim

Accuracy (%)

st Session S5



Summary

Intact CNS

Cerebellum

Limb position

Neural Activity
Spikes

M

Field Potential
4

Injured CNS

STROKE

Cerebellum

Temporally precise stimulation



ECoG in Stroke

Fugl-Meyer of 35



Reduced task-related slow-oscillations
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Thanks for your attention!

Research Funding



