Osher Mini Medical School

"UCSF Scientists Outline What's to Come" November 22, 2019

Development of Implantable

Interfaces to Restore Motor Function

Karunesh Ganguly, MD PhD

Introduction

- Concept of bio-interactive neural interfaces dates to early 20th century
- · Successful translation of
 - Cochlear implants
 - Deep brain-stimulation (DBS)
 - Responsive stimulation (RNS)
- Neural Interface for paralysis and rehabilitation
 - 'Brain-Machine Interfaces'/'Brain-Computer Interfaces'

Cochlear Implants

- Auditory nerve stimulation research starting in the 1950s
- ~22,000 adults and ~15,000 children live in the US with cochlear implants

Deep-Brain Stimulation

Neural Interfaces for Communication and Movement

Motor Disability in the US

Causes of Paralysis 7 N= 5,596,000

www.cdrf.org

Rehabilitation Needs Vary

7

Patient Rehabilitation Goals

Motor Dysfunction

Brain-Computer Interface (BCI)

Also known as "Neural Interface" and "Brain-Machine Interface/BMI"

Extracellular Recording of Activity

Recording neural activity from the brain

Recording neural activity from the brain

Principles Underlying BCI Control

Volitional control of brain activity

Volitional control of movements

BCIs grounded by > 40 years of research into movement control!

Distributed neural population activity

From Wessberg et al., 2000; but see also Chapin et al., 1999, Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Velliste et al., 2008; Pohlmeyer et al., 2009

Recording from neural populations

 $0.3 \mathrm{mV}_{\mathrm{pp}}$ 1.3mV....

0.5mV_{pp1}

Real-time decoding of hand position

"Closed-Loop" Brain-Computer Interfaces

Neural plasticity key for stable BCI control

Ganguly et al., PLoS Biology, 2009; Ganguly et al., Nat Neuro 2011; Gulati et al, Neuro Neuro 2014, 2017 Nat Neuro; Kim et al., Cell 2019

Examples of BCI Control in Human Subjects

Development of BCI Control

- Real-time recording of ensembles Chapin et al., 1999; Wessberg et al., 2000
- Multiple demonstrations of 'closed-loop' control over an external device

Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Velliste et al., 2008; Pohlmeyer et al., 2009

- Human subjects can learn direct neural control of a computer cursor Kennedy et al., 2000; Leuthardt et al., 2004; Hochberg et al., 2006
- Clear demonstration that a subject's intentions can be translated

EEG-interface for communication

- Two patients with advanced ALS (ventilated, PEG tube for > 4 years) could learn to communicate
- Patients were 'locked-in' (no voluntary muscle movements)
- EEG signals could be used to type a message (but very slow!)

Figure 2 The first full message written by subject A.

Case Report: A 51yo molecular biologist with ALS...

BCI Control of a Computer Cursor

FROM Collinger et al., Lancet (2013) See also Hochberg et al., 2006, 2012; Wodlinger et al., 2014

BCI Control in a tetraplegic subject

Translational Challenges

- Signals are not stable \rightarrow Utah Array
- Daily training required because of signal stability
- Complex setups that require lot of support
- Currently not wireless (this will be solved soon)

Ongoing UCSF studies

- ECoG BCI Trial
- Neural Interfaces for Stroke

ECoG based chronic implant

- FDA cleared testing of a chronic ECoG based device
- Addresses a downside of current trials
 - Signal instability
 - Daily training
- Two primary goals are control of a typing interface and a complex robotic arm
- Leverage stability of ECoG signals to engage learning and plasticity

'Plug-and-Play' BCI Control

Impaired hand function after stroke

- ~700,000 strokes/year
- >\$15K for rehabilitation per patient
 Limits of rehab (ICARES Trial, 2018)
- ~50% with <u>hand</u> impairments, limits independence

Towards the Development of a Closed-Loop Neural Interface for Stroke

What is required for closed-loop modulation?

- Electrophysiological targets?
- Predictor of good/poor recovery?
- Can targeted stimulation help chronic deficits?

Synchronous Network Activity During Skilled Movements

Changes in Speed/Consistency with Learning

Reemergence of synchronous activity

Ramanathan*, Guo*, Gulati* et al. Nature Medicine (2018)

Responsive Stimulation

Responsive Stimulation

Summary

Intact CNS

Injured CNS

ECoG in Stroke

Reduced task-related slow-oscillations

Thanks for your attention!

