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Introduction
• Concept of bio-interactive neural 

interfaces dates to early 20th century

• Successful translation of 
− Cochlear implants
− Deep brain-stimulation (DBS)
− Responsive stimulation (RNS)

• Neural Interface for paralysis and 
rehabilitation 

− ‘Brain-Machine Interfaces’/’Brain-Computer 
Interfaces’

MECHANIX ILLUSTRATED (1957)
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Cochlear Implants 

• Auditory nerve stimulation research 
starting in the 1950s

• ~22,000 adults and ~15,000 children 
live in the US with cochlear implants

Image credit:  UCSF Benioff Children’s Hospital
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Deep-Brain Stimulation

Source: NIH, Neurology



Neural Interfaces 
for Communication 
and Movement



Motor Disability in the US

www.cdrf.org



Locked-In (e.g. TBI, Stroke, ALS)

Upper Limb paralysis

VS/MCS (cardiopulmonary arrest, TBI, etc)

Quadriplegia, SCI    
(CP,ALS, MS, etc)

Comatose

Rehabilitation Needs Vary
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Paraplegia

Below ~C5/C6

Above ~C5
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Patient Rehabilitation Goals

Anderson, J Neurotrauma (2004)
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Motor Dysfunction



Brain-Computer Interface (BCI)

Move left..

Also known as “Neural Interface” and “Brain-Machine Interface/BMI”



Extracellular Recording of Activity
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Recording neural activity from the brain
fMRI, MEG

Schwartz et al. Neuron, 2006
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Recording neural activity from the brain

Buzsaki et al., Nat Neuro Reviews, 2012



Principles Underlying BCI Control
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Volitional control of brain activity

Fetz, E, Science, 1969

1 cm

M1



16Georgopoulos AP, J. Neurosci (1982); Dum & Strick (2002); Schwartz, J. Physiology (2006)

Volitional control of movements
A B

BCIs grounded by > 40 years of research into movement control!



1 cm

PP
SMA

PMdS1 M1

Distributed neural population activity

From Wessberg et al., 2000; 
but see also Chapin et al., 1999, Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Velliste et al., 2008; Pohlmeyer et al., 2009  



Recording from neural populations
M1 (L)M1(R)     PMd (L)

1.2mVpp

0.5mVpp]

1.3mVpp

0.3mVpp
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Real-time decoding of hand position

Ganguly et al., 2009

Actual hand movements
Decoder predictions



“Closed-Loop” Brain-Computer Interfaces

Neural Signals

“Actuator”
• Prosthetics
• FES
• Stimulation

“Decoders”

Feedback

Sensors



Neural plasticity key for stable BCI control

Ganguly et al., PLoS Biology, 2009; Ganguly et al., Nat Neuro 2011; Gulati et al, Neuro Neuro 2014, 2017 Nat Neuro; Kim et al., Cell 2019



Examples of BCI Control in 
Human Subjects
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Development of BCI Control

• Real-time recording of ensembles       
Chapin et al., 1999; Wessberg et al., 2000

• Multiple demonstrations of ‘closed-loop’ 
control over an external  device
Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Velliste et al., 
2008; Pohlmeyer et al., 2009

• Human subjects can learn direct neural 
control of a computer cursor
Kennedy et al., 2000; Leuthardt et al., 2004; Hochberg et al., 2006

• Clear demonstration that a subject’s 
intentions can be translated
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EEG-interface for communication
• Two patients with advanced ALS (ventilated, PEG  tube for > 4 

years) could learn to communicate
• Patients were ‘locked-in’ (no voluntary muscle movements)
• EEG signals could be used to type a message (but very slow!)

Birbaumer et al., Nature (1999)



Case Report: A 51yo molecular biologist with ALS…

25Sellars et al., Amyotroph Lateral Scler. (2010)



BCI Control of a Computer Cursor
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FROM Collinger et al., Lancet (2013)
See also Hochberg et al., 2006, 2012; Wodlinger et al., 2014
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BCI Control in a tetraplegic subject 

FROM Pandarinath et al., eLife(2017).   



Translational Challenges 
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• Signals are not stable à Utah Array

• Daily training required because of signal stability

• Complex setups that require lot of support

• Currently not wireless (this will be solved soon)



Ongoing UCSF studies
- ECoG BCI Trial
- Neural Interfaces for Stroke
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ECoG based chronic implant
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** Experimental Device à FDA Investigational Device Exemption (IDE)

• FDA cleared testing of a chronic ECoG based device

• Addresses a downside of current trials
• Signal instability
• Daily training

• Two primary goals are control of a typing interface 
and a complex robotic arm

• Leverage stability of ECoG signals to engage learning 
and plasticity



‘Plug-and-Play’ BCI Control
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‘Neural maps’ Across Days
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Impaired hand function after stroke

• ~700,000 strokes/year

• >$15K for rehabilitation per patient
– Limits of rehab (ICARES Trial, 2018)

• ~50% with hand impairments, 
limits independence



Towards the Development of a 
Closed-Loop Neural Interface for Stroke

Neural	signal

EMG

Stimulation

What is required for closed-loop modulation?
- Electrophysiological targets?
- Predictor of good/poor recovery?
- Can targeted stimulation help chronic deficits?
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Synchronous Network Activity During Skilled Movements

Lemke et al., Nature Neuroscience, 2019
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Changes in Speed/Consistency with Learning
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Reemergence of synchronous activity
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Responsive Stimulation
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Onset of
movement

Limb position

Temporal electrical stimulation
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Responsive Stimulation



Summary
Injured CNSIntact CNS

VA/VL

DLS

PLC

GPi

GPe

M2

DMS

S1/S2

Cerebellum

STROKE

Limb position
Spikes

Field Potential

Neural Activity

Temporally precise stimulation



ECoG in Stroke
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Fugl-Meyer of 35

Ramanathan*, Guo*, Gulati* et al.  Nature Medicine (2018)



Reduced task-related slow-oscillations
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Thanks for your attention!
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