

Re-growing the Skeleton:

Approaches in Tissue Engineering and Regenerative Medicine

How we fix things now

Total Knee Replacements

Cartilage loss leading to bone on bone pain

Fracture Plates

Defining Regenerative Medicine

restore form and function to damaged and diseased tissue through <u>biological</u> approaches

Applications of Regenerative Medicine in Cartilage Repair

Joint Replacements

Where it all starts....

CHALLENGE: Cartilage has no innate regenerative capacity

Current Regenerative Medicine in Cartilage Repair

Transplanting Tissue

Mosaciplasty

- Improves biomechanics
- ✓ Does not activate repair

Injecting Biologics

Hyaluronic Acid

- ✓ Mimics synovial fluid (lubrication)
- Temporary relief
- ✓ Does not activate repair

Platelet Rich Plasma (PRP)

- May stimulate repair
- ✓ Highly variable results
- ✓ Biologically not well characterized

Current Regenerative Medicine in Cartilage Repair

Stem Cell Injections

Interarticular injection to knees ✓ Minimal cell engraftment

Protects subchondral bone
 May stimulate cartilage repair
 Reduces inflammation

Lin et al. Cellular & Molecular Immunology 8(1):19-22 2010

Future of Regenerative Medicine in Cartilage Repair

PROBLEM: skeletal tissues have a biomechanical and biologic function

Tissue Engineering

Stem Cells

Biocompatible Liquid "Monomer"

"Hydrogel" Scaffold

Future of Regenerative Medicine in Cartilage Repair

Applications of Regenerative Medicine in Bone Repair

Magnitude of the problem

- 15 million fractures (\$45B)1.6 million trauma patients1.6 million bone graft procedures
- 10-20% of normal fractures don't heal
 47% of fractures with co-morbidities don't heal

ADVANTAGE: Bone has good innate regenerative capacity

CHALLENGE: Bone is a complex tissue (bone, vasculature, nerves, marrow space)

Current Regenerative Medicine in Bone Repair

Gold Standard = Autograft

- Limited ability to accelerate remodeling of bone
- Limited availability of material for large bone defects
- Donor site morbidity (20-40 % pain or complication)
- Difficulty of repeated procedures

Alternatives = Allograft (Dead Bone)

- Synthetic materials difficult to attach soft tissues
- Loss of bone and tissue near graft
- ✓ Poor graft vascularization → osteonecrosis
 ✓ Poor integration
- Allograft failure due to resorption and fracture

Future of Regenerative Medicine in Bone Repair

PROBLEM: Current technologies promote bone repair/regeneration through direct bone formation (intramembranous ossification), yet development and repair proceed through cartilage intermediate (endochondral ossification).

Developmental Engineering

Engineer a system that attempts that models tissue developmental or repair

Indirect bone formation as a better regeneration strategy?

Cartilage Graft Produces Integrated Bone

Bahney et al. Stem cell-derived endochondral cartilage stimulates bone healing by tissue transformation. JBMR 2014

Cartilage Graft Produces Integrated Bone

Bahney et al. Stem cell-derived endochondral cartilage stimulates bone healing by tissue transformation. JBMR 2014

Cartilage graft heals the bone defect

Tissue Engineering Endochondral Bone Regeneration

Developmental Engineering

Engineer a system that attempts that models tissue developmental or repair

Components in Tissue Engineering

Repair damaged or diseased tissue with a regenerate that has metabolic and mechanical function of native tissue.

- 1. Three dimensional scaffold \rightarrow housing
- 2. Bioactive factors \rightarrow trigger healing
- 3. Cells \rightarrow replace tissue

Unanswered questions in Tissue Engineering...

<u>Scaffold</u>: which material, microstructure, strength, method for synthesis?? <u>Bioactive factors</u>: what to deliver, how to deliver?? <u>Cells</u>: which cells, how to deliver??

Smart Scaffolds – The Next Generation of Tissue Engineering

Trying to re-engineer our native system with nanotechnology

Growth Factors "Boiactive"

Pollock, J., and Healy, K.E., "Biomimetic and Bio-responsive Materials in Regenerative Medicine: Intelligent Materials for Healing Living Tissues," In *Strategies in Regenerative Medicine, M. Santin (Ed.), Springer, 2009*

Types of Scaffolds for Tissue Engineering

	NATURAL	Synthetic
PROs:	✓ Biological Signal✓ Biodegradable	 Easy to Control Mechanical Strength Degradation profile Porosity
CONs:	 Weak Mechanical Strength Immunogenetic Response Hard to modify 	 Inert Low cell adhesion Low cell response

Bio-synthetic Hybrid Scaffolds

Adapted from: Hwang & Elisseeff. Controlled Differentiation of Stem Cells. (2009)

Emerging Technologies in Tissue Engineering

Electrospinning

Fibre Mat

3D Bioprinting

Re-growing the Skeleton:

Approaches in Tissue Engineering and Regenerative Medicine

